

COMMODITIES

THEORIE IN DE PRAKTIJK

Utrecht University Utrecht | 13:00 - 17:00 uur

Rijksdienst voor Ondernemend Nederland

Ministerie van Klimaat en Groene Groei

Task 43

Ministerie van Klimaat en Groene Groei

Rijksdienst voor Ondernemend Nederland

IEA Task 43 Biomass

Wolter Elbersen Sr. Researcher Biomass and Energy Wageningen University & Research

www.plat<mark>formbio</mark>economie.nl

To be or not to be a biobased commodity – How to bring real lignocellulosic commodities about?

Wolter Elbersen

Utrecht. IEA Commodities: Theorie in de praktijk 19 februari 2025

Where should a lignocellulose conversion plant / biorefinery be located?

In a biomass rich area?

or

At a large hub / harbour?

Message:

- Lignocellulosic biomass can be made available at very large scales. The issue is: <u>How to linking biomass to</u> <u>demand in an efficient way?</u>
- Supply and demand scales do not match especially not for advanced biofuel and chemical production
- We need to define and develop a <u>limited number</u> of lignocellulosic intermediate <u>commodities</u> to link the biomass sources worldwide to markets

- What are real lignocellulosic commodities?
- Real lignocellulosic commodities are needed to:
 - Ensure security of supply
 - Make efficient and circular use of the available biomass
 - Lower the cost of biomass supply

Much (herbaceous) biomass is underutilized – Often causing pollution problems – how much can be used for biobased applications?

Largest 10 crops in the		Total field	Total mill	
world				
	Million hectares	Million ton DM crop resi	illion ton DM crop residue per year	
Maize	185	1,038		
Rice, paddy	163	816		
Wheat	220	729		
Sugar cane	27	264	264	
Oil Palm	19	192	52	
Barley	49	173		
Sorghum	45	103		
Sunflower seed	25	66	8	
Millet	31	43		
Seed cotton	35	35		
Total	800	3,459	316	
All crops worldwide:	1,414			

Based on FAOSTAT (2018) and own estimates

Where should a lignocellulose conversion plant / biorefinery be located?

Location:	Near the	At a large logistical center
Factor	biomass	(i.e. harbour)
Cost of biomass	+	
Security of supply		+
Availability of		+
infrastructure		
Economy of scale		+
Availability of personnel /		+
expertise		
Value of residues		+
Sum	1	5

A real commodity is

1. <u>Easy to store and transport</u> = high energy density, dry, low volume, <u>low ash, nutrient depleted</u>

2. <u>Fungible</u> = is "exchangeable", standard quality

3. <u>Standardization</u> of transport, contracting, insurance, conversion systems

4. <u>Functioning markets</u> = trade systems, financial instruments (futures, etc.), high tradability

5. <u>Sustainability standardized</u> = sustainability certification systems

Commodities

- Maximize circular use of biomass: use stranded biomass + use total potential
- Give small producers a market → mobilizes more biomass
- Avoid risky one-on-one relationships
- Many applications per commodity
- Solve issue of scale differences between supply and demand

- Wood chips
- Wood pellets
- Torrefied pellets
- Pyrolysis oil
- Herbaceous pellets
- Bio-crude
- ?

chemicals, fuel, electricity, heat

How to get there?

Local hubs produce <u>lignocellulosic</u> <u>commodity</u> at rel. small scale (25.000 ton per year?) = remove nutrients, water, uniform/fungible

Define <u>only a few</u> biomass commodities that cover:

- All lignocellulosic biomass types: wood, grass, straw, bagasse, etc.
- All applications: heat, electricity and chemicals, transport fuels, jetfuel, etc.
- Set <u>wide standards</u> and <u>avoid frivolous</u> <u>demands</u>

- Involve <u>all players in the</u> <u>production chain (biomass</u> producers, machine builders, regulators, insurers, financing, transport, final users)
- Allow markets to agree on limited number of commodities
- At what volume a commodity is a commodity?
- Implement worldwide?
- ?

Thank you!

wolter.elbersen@wur.nl

To be or not to be a biobased commodity

Assessing requirements and candidates for lignocellulosic based commodities

Authors: Wolter Elbersen¹, Iris Vural Gursel¹, Juliën Voogt¹, Koen Meesters¹, and Biljana Kulisic² ¹Wageningen Food & Biobased Research, Wageningen, The Netherlands ²Energy Institute Hrvoje Pozar, Zagreb, Croatia

This study was carried out by Wageningen Food & Biobased Research with financial support by IEA Bioenergy Task 43 and funding from the Wageningen University & Research Knowledge Base program: Towards a Circular and Climate Positive Society (Project KB-34-012-002).

Wageningen Food & Biobased Research Wageningen, March 2022

> Report 2242 DOI 10.18174/562461

To be or not to be a biobased commodity

Assessing requirements and candidates for lignocellulosic based commodities

> IEA Bioenergy: Task 43 March 2022

WAGENINGEN UNIVERSITY & RESEARCH